Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fine-structure analysis of ribosomal protein gene transcription.

Identifieur interne : 001787 ( Main/Exploration ); précédent : 001786; suivant : 001788

Fine-structure analysis of ribosomal protein gene transcription.

Auteurs : Yu Zhao [États-Unis] ; Kerri B. Mcintosh ; Dipayan Rudra ; Stephan Schawalder ; David Shore ; Jonathan R. Warner

Source :

RBID : pubmed:16782874

Descripteurs français

English descriptors

Abstract

The ribosomal protein genes of Saccharomyces cerevisiae, responsible for nearly 40% of the polymerase II transcription initiation events, are characterized by the constitutive tight binding of the transcription factor Rap1. Rap1 binds at many places in the yeast genome, including glycolytic enzyme genes, the silent MAT loci, and telomeres, its specificity arising from specific cofactors recruited at the appropriate genes. At the ribosomal protein genes two such cofactors have recently been identified as Fhl1 and Ifh1. We have now characterized the interaction of these factors at a bidirectional ribosomal protein promoter by replacing the Rap1 sites with LexA operator sites. LexA-Gal4(AD) drives active transcription at this modified promoter, although not always at the correct initiation site. Tethering Rap1 to the promoter neither drives transcription nor recruits Fhl1 or Ifh1, showing that Rap1 function requires direct DNA binding. Tethering Fhl1 also fails to activate transcription, even though it does recruit Ifh1, suggesting that Fhl1 does more than simply provide a platform for Ifh1. Tethering Ifh1 to the promoter leads to low-level transcription, at the correct initiation sites. Remarkably, activation by tethered LexA-Gal4(AD) is strongly reduced when TOR kinase is inhibited by rapamycin. Thus, TOR can act independently of Fhl1/Ifh1 at ribosomal protein promoters. We also show that, in our strain background, the response of ribosomal protein promoters to TOR inhibition is independent of the Ifh1-related protein Crf1, indicating that the role of this corepressor is strain specific. Fine-structure chromatin mapping of several ribosomal protein promoters revealed that histones are essentially absent from the Rap1 sites, while Fhl1 and Ifh1 are coincident with each other but distinct from Rap1.

DOI: 10.1128/MCB.02367-05
PubMed: 16782874
PubMed Central: PMC1489154


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fine-structure analysis of ribosomal protein gene transcription.</title>
<author>
<name sortKey="Zhao, Yu" sort="Zhao, Yu" uniqKey="Zhao Y" first="Yu" last="Zhao">Yu Zhao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mcintosh, Kerri B" sort="Mcintosh, Kerri B" uniqKey="Mcintosh K" first="Kerri B" last="Mcintosh">Kerri B. Mcintosh</name>
</author>
<author>
<name sortKey="Rudra, Dipayan" sort="Rudra, Dipayan" uniqKey="Rudra D" first="Dipayan" last="Rudra">Dipayan Rudra</name>
</author>
<author>
<name sortKey="Schawalder, Stephan" sort="Schawalder, Stephan" uniqKey="Schawalder S" first="Stephan" last="Schawalder">Stephan Schawalder</name>
</author>
<author>
<name sortKey="Shore, David" sort="Shore, David" uniqKey="Shore D" first="David" last="Shore">David Shore</name>
</author>
<author>
<name sortKey="Warner, Jonathan R" sort="Warner, Jonathan R" uniqKey="Warner J" first="Jonathan R" last="Warner">Jonathan R. Warner</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16782874</idno>
<idno type="pmid">16782874</idno>
<idno type="doi">10.1128/MCB.02367-05</idno>
<idno type="pmc">PMC1489154</idno>
<idno type="wicri:Area/Main/Corpus">001787</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001787</idno>
<idno type="wicri:Area/Main/Curation">001787</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001787</idno>
<idno type="wicri:Area/Main/Exploration">001787</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Fine-structure analysis of ribosomal protein gene transcription.</title>
<author>
<name sortKey="Zhao, Yu" sort="Zhao, Yu" uniqKey="Zhao Y" first="Yu" last="Zhao">Yu Zhao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mcintosh, Kerri B" sort="Mcintosh, Kerri B" uniqKey="Mcintosh K" first="Kerri B" last="Mcintosh">Kerri B. Mcintosh</name>
</author>
<author>
<name sortKey="Rudra, Dipayan" sort="Rudra, Dipayan" uniqKey="Rudra D" first="Dipayan" last="Rudra">Dipayan Rudra</name>
</author>
<author>
<name sortKey="Schawalder, Stephan" sort="Schawalder, Stephan" uniqKey="Schawalder S" first="Stephan" last="Schawalder">Stephan Schawalder</name>
</author>
<author>
<name sortKey="Shore, David" sort="Shore, David" uniqKey="Shore D" first="David" last="Shore">David Shore</name>
</author>
<author>
<name sortKey="Warner, Jonathan R" sort="Warner, Jonathan R" uniqKey="Warner J" first="Jonathan R" last="Warner">Jonathan R. Warner</name>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular biology</title>
<idno type="ISSN">0270-7306</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Forkhead Transcription Factors (MeSH)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Promoter Regions, Genetic (drug effects)</term>
<term>Recombinant Fusion Proteins (genetics)</term>
<term>Recombinant Fusion Proteins (metabolism)</term>
<term>Ribosomal Proteins (genetics)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Serine Endopeptidases (genetics)</term>
<term>Serine Endopeptidases (metabolism)</term>
<term>Sirolimus (pharmacology)</term>
<term>Telomere-Binding Proteins (genetics)</term>
<term>Telomere-Binding Proteins (metabolism)</term>
<term>Trans-Activators (genetics)</term>
<term>Trans-Activators (metabolism)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transcription, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Facteurs de transcription Forkhead (MeSH)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines de fusion recombinantes (génétique)</term>
<term>Protéines de fusion recombinantes (métabolisme)</term>
<term>Protéines ribosomiques (génétique)</term>
<term>Protéines télomériques (génétique)</term>
<term>Protéines télomériques (métabolisme)</term>
<term>Régions promotrices (génétique) (effets des médicaments et des substances chimiques)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Serine endopeptidases (génétique)</term>
<term>Serine endopeptidases (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Transactivateurs (génétique)</term>
<term>Transactivateurs (métabolisme)</term>
<term>Transcription génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Recombinant Fusion Proteins</term>
<term>Ribosomal Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Serine Endopeptidases</term>
<term>Telomere-Binding Proteins</term>
<term>Trans-Activators</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Recombinant Fusion Proteins</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Serine Endopeptidases</term>
<term>Telomere-Binding Proteins</term>
<term>Trans-Activators</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Forkhead Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Promoter Regions, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régions promotrices (génétique)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protéines bactériennes</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines ribosomiques</term>
<term>Protéines télomériques</term>
<term>Saccharomyces cerevisiae</term>
<term>Serine endopeptidases</term>
<term>Transactivateurs</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Protéines bactériennes</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines télomériques</term>
<term>Saccharomyces cerevisiae</term>
<term>Serine endopeptidases</term>
<term>Transactivateurs</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Facteurs de transcription Forkhead</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Transcription génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The ribosomal protein genes of Saccharomyces cerevisiae, responsible for nearly 40% of the polymerase II transcription initiation events, are characterized by the constitutive tight binding of the transcription factor Rap1. Rap1 binds at many places in the yeast genome, including glycolytic enzyme genes, the silent MAT loci, and telomeres, its specificity arising from specific cofactors recruited at the appropriate genes. At the ribosomal protein genes two such cofactors have recently been identified as Fhl1 and Ifh1. We have now characterized the interaction of these factors at a bidirectional ribosomal protein promoter by replacing the Rap1 sites with LexA operator sites. LexA-Gal4(AD) drives active transcription at this modified promoter, although not always at the correct initiation site. Tethering Rap1 to the promoter neither drives transcription nor recruits Fhl1 or Ifh1, showing that Rap1 function requires direct DNA binding. Tethering Fhl1 also fails to activate transcription, even though it does recruit Ifh1, suggesting that Fhl1 does more than simply provide a platform for Ifh1. Tethering Ifh1 to the promoter leads to low-level transcription, at the correct initiation sites. Remarkably, activation by tethered LexA-Gal4(AD) is strongly reduced when TOR kinase is inhibited by rapamycin. Thus, TOR can act independently of Fhl1/Ifh1 at ribosomal protein promoters. We also show that, in our strain background, the response of ribosomal protein promoters to TOR inhibition is independent of the Ifh1-related protein Crf1, indicating that the role of this corepressor is strain specific. Fine-structure chromatin mapping of several ribosomal protein promoters revealed that histones are essentially absent from the Rap1 sites, while Fhl1 and Ifh1 are coincident with each other but distinct from Rap1.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16782874</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>08</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0270-7306</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>26</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2006</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular biology</Title>
<ISOAbbreviation>Mol Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Fine-structure analysis of ribosomal protein gene transcription.</ArticleTitle>
<Pagination>
<MedlinePgn>4853-62</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The ribosomal protein genes of Saccharomyces cerevisiae, responsible for nearly 40% of the polymerase II transcription initiation events, are characterized by the constitutive tight binding of the transcription factor Rap1. Rap1 binds at many places in the yeast genome, including glycolytic enzyme genes, the silent MAT loci, and telomeres, its specificity arising from specific cofactors recruited at the appropriate genes. At the ribosomal protein genes two such cofactors have recently been identified as Fhl1 and Ifh1. We have now characterized the interaction of these factors at a bidirectional ribosomal protein promoter by replacing the Rap1 sites with LexA operator sites. LexA-Gal4(AD) drives active transcription at this modified promoter, although not always at the correct initiation site. Tethering Rap1 to the promoter neither drives transcription nor recruits Fhl1 or Ifh1, showing that Rap1 function requires direct DNA binding. Tethering Fhl1 also fails to activate transcription, even though it does recruit Ifh1, suggesting that Fhl1 does more than simply provide a platform for Ifh1. Tethering Ifh1 to the promoter leads to low-level transcription, at the correct initiation sites. Remarkably, activation by tethered LexA-Gal4(AD) is strongly reduced when TOR kinase is inhibited by rapamycin. Thus, TOR can act independently of Fhl1/Ifh1 at ribosomal protein promoters. We also show that, in our strain background, the response of ribosomal protein promoters to TOR inhibition is independent of the Ifh1-related protein Crf1, indicating that the role of this corepressor is strain specific. Fine-structure chromatin mapping of several ribosomal protein promoters revealed that histones are essentially absent from the Rap1 sites, while Fhl1 and Ifh1 are coincident with each other but distinct from Rap1.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Yu</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McIntosh</LastName>
<ForeName>Kerri B</ForeName>
<Initials>KB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rudra</LastName>
<ForeName>Dipayan</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schawalder</LastName>
<ForeName>Stephan</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shore</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Warner</LastName>
<ForeName>Jonathan R</ForeName>
<Initials>JR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM025532</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM-25532</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Biol</MedlineTA>
<NlmUniqueID>8109087</NlmUniqueID>
<ISSNLinking>0270-7306</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C495776">FHL1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051858">Forkhead Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C094046">IFH1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C026786">LexA protein, Bacteria</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C440829">RAP1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012269">Ribosomal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D034501">Telomere-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015534">Trans-Activators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.-</RegistryNumber>
<NameOfSubstance UI="D012697">Serine Endopeptidases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051858" MajorTopicYN="N">Forkhead Transcription Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="Y">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012269" MajorTopicYN="N">Ribosomal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012697" MajorTopicYN="N">Serine Endopeptidases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034501" MajorTopicYN="N">Telomere-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015534" MajorTopicYN="N">Trans-Activators</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>8</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>6</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16782874</ArticleId>
<ArticleId IdType="pii">26/13/4853</ArticleId>
<ArticleId IdType="doi">10.1128/MCB.02367-05</ArticleId>
<ArticleId IdType="pmc">PMC1489154</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Trends Genet. 2000 Feb;16(2):51-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10652526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2004 Aug;36(8):900-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2000 Dec;6(6):1297-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11163204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2001 Aug;28(4):327-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11455386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Feb 20;513(1):58-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11911881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14112-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9826662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Nov 25;95(5):717-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9845373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1999 Apr;15(4):267-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10320394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Jun 10;399(6736):609-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10376605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Aug;19(8):5279-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10409719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Aug;19(8):5393-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10409730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Dec 23;432(7020):1054-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Dec 23;432(7020):1058-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Dec 29;119(7):969-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15620355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Feb 9;24(3):533-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15692568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jul 22;309(5734):626-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Aug 26;122(4):517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16122420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Oct 21;123(2):219-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16239141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(9):R62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15345046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14315-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15353587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Oct 22;16(2):199-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15494307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1987 Nov 25;262(33):16055-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3316213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1989 Feb 24;56(4):619-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2645056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 May;122(1):19-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2659436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1994 Jan;8(2):211-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8299940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1994 May;14(5):2905-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8164651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1995 May 11;23(9):1475-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7784199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1995 Mar;11(3):261-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7785326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Oct;15(10):5820-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7565735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1996 Jun;16(6):3187-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8649429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1996 Feb;19(3):535-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8830244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1997 Oct;147(2):521-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9335590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Oct 24;278(5338):680-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9381177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Apr;9(4):823-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11983173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Oct 25;298(5594):799-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12399584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Jan;23(2):699-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12509467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2003 Mar;268(6):791-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12655405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jun;11(6):1587-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12820971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Apr 16;117(2):185-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15084257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Dec;11(12):4241-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102521</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Mcintosh, Kerri B" sort="Mcintosh, Kerri B" uniqKey="Mcintosh K" first="Kerri B" last="Mcintosh">Kerri B. Mcintosh</name>
<name sortKey="Rudra, Dipayan" sort="Rudra, Dipayan" uniqKey="Rudra D" first="Dipayan" last="Rudra">Dipayan Rudra</name>
<name sortKey="Schawalder, Stephan" sort="Schawalder, Stephan" uniqKey="Schawalder S" first="Stephan" last="Schawalder">Stephan Schawalder</name>
<name sortKey="Shore, David" sort="Shore, David" uniqKey="Shore D" first="David" last="Shore">David Shore</name>
<name sortKey="Warner, Jonathan R" sort="Warner, Jonathan R" uniqKey="Warner J" first="Jonathan R" last="Warner">Jonathan R. Warner</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Zhao, Yu" sort="Zhao, Yu" uniqKey="Zhao Y" first="Yu" last="Zhao">Yu Zhao</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001787 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001787 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16782874
   |texte=   Fine-structure analysis of ribosomal protein gene transcription.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16782874" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020